Math 434 Assignment 4

Due May 10

Assignments will be collected in class.

1. In class we proved Ramsey's theorem for pairs and two colours. Use this to prove Ramsey's theorem for pairs and n colours:

Let k be a natural number, and let $c: [\omega]^2 \to k$ be a function. Then there is an infinite subset $H \subseteq \omega$ such that c is constant on subsets of H.

2. A filter \mathcal{F} on ω is said to be countably generated if there are sets $\{A_i\}_{i\in\omega}$ such that

$$\mathcal{F} = \{ X \subseteq \omega : (\exists i \in \omega) \ A_i \subseteq X \}.$$

Prove that no non-principal ultrafilter can be countably generated.

- 3. Let \mathcal{F} be the principal ultrafilter on I generated by $j \in I$. Show that $\prod_I \mathcal{M}_i / \mathcal{F} \cong M_j$.
- 4. Let T be a complete theory. A complete n-type (of T) $p(x_1, \ldots, x_n)$ is a set of formulas in n free variables x_1, \ldots, x_n such that:
 - for every formula $\psi(x_1, \ldots, x_n) \in p, T \models \exists x_1, \ldots, x_n \psi(x_1, \ldots, x_n);$
 - for every formula $\psi(x_1, \ldots, x_n)$, either $\psi \in p$ or $\neg \psi \in p$.

We say that a model \mathcal{M} realizes a complete *n*-type *p* if there are $a_1, \ldots, a_n \in \mathcal{M}$ such that for every $\psi \in p$, $\mathcal{M} \models \psi(a_1, \ldots, a_n)$.

Show that there is a model of T that realizes every complete n-type of T.

5. Prove that if α is a limit ordinal, then the axiom of union holds in V_{α} :

$$V_{\alpha} \vDash (\forall x)(\exists y)(\forall z)[z \in y \longleftrightarrow (\exists w \in x)(z \in w)].$$

- 6. A strongly inaccessible cardinal is an uncountable regular limit cardinal κ such that for all $\lambda < \kappa$, $2^{\lambda} < \kappa$. Prove that if κ is strongly inaccessible, then for all $\alpha < \kappa$, $|V_{\alpha}| < \kappa$.
- 7. Except for the axiom of infinity, all the axioms of ZFC hold in V_{ω} . Prove that the axiom of infinity does not hold, i.e., $V_{\omega} \models \neg(\exists x) [\emptyset \in x \land (\forall y \in x) (\{y\} \cup y \in x)]$. (This shows that the axiom of infinity is not implied by the remaining axioms of ZFC.)